
Chapter 3
Writing Simple Programs

Charles Severance

Textbook: Using Google App Engine, Charles Severance

Unless otherwise noted, the content of this course material is licensed under a Creative
Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/.

Copyright 2009, Charles Severance

Internet

HTML

CSS

JavaScript

AJAX

HTTP Request

Response GET

POST

Python

Templates

Data Store
memcache

Python

What Is Programming?

• Witin the web server we set lots and lots of
“requests” which we need to respond to

• This is the request/response cycle

• We don’t want to do this by hand

• So we write a program to communicate how
we want each of the requests to be handled

 Software

Input
Devices Central

Processing
Unit

Main
Memory

Output
Devices

Secondary
Memory

Generic
Computer

What
Next?

Program Steps or Program Flow

• Like a recipe or installation instructions, a program is a sequence of
steps to be done in order

• Some steps are conditional - they may be skipped

• Sometimes a step or group of steps are to be repeated

• Sometimes we store a set of steps to be reused over and over as
needed several places throughout the program

add 300 grams of flour
add 100 ml of milk
add an egg

if altitude > 2000:
 add an egg

add 30 grams of salt

while there are too many lumps:
 Beat mixture with a fork

open and add provided flavor packet

Sequential
Conditional
Repeated

Store / Reuse

add 300 grams of flour
add 100 ml of milk
add an egg

if altitude > 2000:
 add an egg

 add 30 grams of salt

 while there are too many lumps:
 Beat mixture with a fork

 open and add provided flavor packet

Sequential
Conditional
Repeated

Store / Reuse

Elevators in Europe!

usf = input('Enter the US Floor Number: ')
wf = usf - 1
print 'Non-US Floor Number is',wf

ProcessInput Output

python elev.py
Enter the US Floor Number: 2
Non-US Floor Number is 1

The Essence of Programming

Program Steps or Program Flow

• Like a recipe or installation instructions, a program is a sequence of
steps to be done in order

• Some steps are conditional - they may be skipped

• Sometimes a step or group of steps are to be repeated

• Sometimes we store a set of steps to be reused over and over as
needed several places throughout the program

Sequential Steps

Program:

x = 1
print x
x = x + 1
print x

Output:

1
2

x = 1

print x

x = x + 1

print x

When a program is running, it flows from one step to the next.
We as programmers set up “paths” for the program to follow.

Conditional Steps

Output:

Smaller
Finis

Program:

x = 5
if x < 10:
 print 'Smaller'

if x > 20:
 print 'Bigger'

print 'Finis'

x = 5

X < 10 ?

print 'Smaller'

X > 20 ?

print 'Bigger'

print 'Finis'

Yes

Yes

Repeated Steps
Output:

0
1
2
3
4
Bye

Program:

for i in range(5) :
 print i

print 'Bye'

i = 0 .. 4

print i

Loops (repeated steps) have iteration variables that change each time
through a loop. Often these iteration variables go through a sequence of

numbers.

Done

print 'Bye'

Stored (and reused) Steps

Output:

Hello
Fun
Zip
Hello
Fun

Program:

def hello():
 print 'Hello'
 print 'Fun'

hello()
print 'Zip'
hello()

def

 print 'Hello'
print 'Fun'

hello()

print 'Zip'

We call these little stored chunks of code “subprograms” or “functions”.

hello():

hello()

print 'Your guess is', guess

answer = 42

if guess < answer :
 print 'Your guess is too low'

if guess == answer :
 print 'Congratulations!'

if guess > answer :
 print 'Your guess is too high'

print 'Bad guess'

true false

answer = 42

print 'Good Guess'

guess == answer

print 'Your guess is', guess

answer = 42

if guess == answer :
 print 'Good guess'
else:
 print 'Bad guess'

Nesting

• We can place a block of code
within another block of code

• We call this “nesting” because
the inner block is snugly
nestled within the outer
block

print 'Your guess is', guess

answer = 42

if guess == answer :
 print 'Congratulations!'
else:
 if guess < answer :
 print 'Your guess is too low'
 else:
 print 'Your guess is too high'

true false

answer = 42

print
'Congratulations'

guess == answer

print 'Too High'

true false

print 'Too low'

guess < answer

print 'Your guess is', guess
answer = 42
if guess == answer :
 print 'Congratulations!'
else:
 if guess < answer :
 print 'Your guess is too low'
 else:
 print 'Your guess is too high'

print 'Congrats'

true

false

answer = 42

guess == answer

true

false

guess < answer print 'Too low'

print 'Too high'

print 'Your guess is', guess

answer = 42

if guess == answer :
 print 'Congratulations!'
elif guess < answer :
 print 'Your guess is too low'
else:
 print 'Your guess is too high'

Variables

• Variables are named locations in the computer’s main memory

• We programmers use variables to store values that we want to use
later in the program

• We get to pick the names of our variables (within limits)

usf = input('Enter the US Floor Number: ')
wf = usf - 1
print 'Non-US Floor Number is',wf

Rules for Python Variable Names

• Must start with a letter or underscore _

• Must consist of letters and numbers

• Case Sensitive

• Good: x usf _food food16 FOOD

• Bad: 42secret :usf value-7

• Different: usf Usf USF

Menmonic Variables

• We often try to pick mnemonic variable names to help us remember
what we intended as the contents of a variable

• Non-mnemonic: x42 xyzzy snagll a123 ljkljk

• Mnemonic: count lines word usf wf

http://en.wikipedia.org/wiki/Mnemonic

usf = input('Enter the US Floor Number: ')
wf = usf - 1
print 'Non-US Floor Number is',wf

usf = input('Enter the US Floor Number: ')
wf = usf - 1
print 'Non-US Floor Number is',wf

dsjdkjds = input('Enter the US Floor Number: ')
xsjdkjds = dsjdkjds - 1
print 'Non-US Floor Number is', xsjdkjds

Mnemonic

Non-
Mnemonic

Reserved Words

• You can not use reserved words as variable names / identifiers

and del for is raise
assert elif from lambda return

break else global not try
class except if or while

continue exec import pass yield
def finally in print

Assignment Statements

• variable = expression

• Evaluate the expression to a value and then put that value into the
variable

x = 1
spam = 2 + 3
spam = x + 1
x = x + 1

Slow Motion Assignment

• We can use the same variable on the left and right side of an
assignment statement

• Remember that the right side is evaluated *before* the variable is
updated

x = x + 1
x: 5 6

6

Input Statements

• input('Prompt') - displays the
prompt and waits for us to
input an expression - this works
for numbers

• In Chapter 4 we will see how to
read strings

>>> x = input('Enter ')
Enter 123
>>> print x
123

Constants

• We use the term “constant” or “literal” to indicate a value that is not
a variable

usf = input('Enter the US Floor Number: ')
wf = usf - 1
print 'Non-US Floor Number is', wf

String Data

• Modern programs work with string data ('Fred', 'Ann Arbor', ...) far
more often than numeric data (1, 2, 3.14159)

• Python has great support for working with strings

print 'Your guess is', guess

answer = 42

if guess == answer :
 msg = 'Congratulations!'
elif guess < answer :
 msg = 'Your guess is too low'
else:
 msg = 'Your guess is too high'

print msg

We can use string constants
and string variables to simplify
our program. Remember that

a variable is a place in
memory that we can use to

store something that we want
to use later in our program.

print 'Your guess is', guess

answer = 42

if guess < answer :
 print 'Your guess is too low'

if guess == answer :
 print 'Congratulations!'

if guess > answer :
 print 'Your guess is too high'

guess=25

When you type “25” into the
form and press “Submit”,

your browser sends a string
like “guess=25” to your web

application.

Indexing Strings

• We can look at each character in a string by “indexing” the string with
square brackets “[“ and “]”

• The first character in a string is [0]

python
>>> txt = 'guess=25'
>>> print txt[0]
g
>>> print txt[1]
u
>>>

guess=25
01234567

Slicing Strings

• We can extract a range of characters in a string using two numbers
and a colon (:) in the square brackets

• The second value means “up to but not including”

python
>>> txt = 'guess=25'
>>> print txt[2:4]
es
>>> print txt[2:5]
ess
>>>

guess=25
01234567

Slicing Strings

• When we slice strings, we can omit the first or second number and it
implies beginning and end of the string respectively

python
>>> txt = 'guess=25'
>>> print txt[:5]
guess
>>> print txt[6:]
25
>>>

guess=25
01234567

Concatenating Strings

• We use the “+” operator to concatenate two strings

• If we want a space between the strings, we need to add the space

>>> think = 'happy' + 'thoughts'
>>> print think
happythoughts
>>>

>>> think = 'happy' + ' ' + 'thoughts'
>>> print think
happy thoughts
>>>

The Python String Library

• Python has a number of powerful string manipulation capabilities in
the string library (an example of the store and reuse pattern)

>>> txt = 'guess=25'
>>> print txt.find('=')
5
>>> print txt.find('pizza')
-1
>>>

guess=25
01234567

The Python String Library

• Other capabilities in the string library include : lowercase(), rfind(),
split(), strip(), rstrip(), replace(), and many more

http://docs.python.org/library/stdtypes.html

Types and Conversion

• Every variable and constant in
Python as a “type” and Python
knows the type

• If you do something that is not
allowed for a particular type, you
will get an error

• We can ask Python which type a
variable is using the built-in type()
function

>>> txt = 'guess=25'
>>> print type(txt)
<type 'str'>
>>> pos = txt.find('=')
>>> print pos
5
>>> print type(pos)
<type 'int'>
>>>

Breaking the Rules...
>>> txt = 'abc' + 'def'
>>> print txt
abcdef
>>> num = 36 + 6
>>> print num
42
>>> huh = 'abc' + 6
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: cannot concatenate 'str' and 'int' objects
>>>

Converting Integer to String

>>> txt = 'abc' + 'def'
>>> print txt
abcdef
>>> num = 36 + 6
>>> print num
42
>>> huh = 'abc' + str(6)
>>> print huh
abc6
>>>

If we convert the integer to a
string using the built-in str()

function - the types match for
the concatenation (+)

operation.

Parsing a String

• Sometimes we want to break a string
into pieces and do something with
those pieces in several steps

>>> txt = 'guess=25'
>>> pos = txt.find('=')
>>> sub = txt[pos+1:]
>>> print sub
25
>>> print type(sub)
<type 'str'>
>>> ival = int(sub)
>>> print ival
25
>>> print type(ival)
<type 'int'>
>>>

guess=25
01234567

Multi-Value Variables: Collections

• So far all variables we ave seen contain a single value and if we put a
new value into the variable, it over-writes the existing value

• Collections are a type of variable that can contain more than one
value at the same time

• We need a way to organize, store, and retrieve these multiple values

A Python List Object

• A Python list() object can contain more
than one item

• Lists are stored in order and are
indexed by the position of a value
within a list

• They are like a one column spreadsheet

• Python lists follow “European Elevator”
rules

0
1
2
3

• We create an empty list by calling
the built-in function list()

• We add new elements using
append()

• We can find the length of the list
using the built in function len()

• We can index the list with square
brackets

>>> pals = list()
>>> pals.append('Glenn')
>>> pals.append('Sally')
>>> pals.append('Joe')
>>> print pals
['Glenn', 'Sally', 'Joe']
>>> print type(pals)
<type 'list'>
>>> print len(pals)
3
>>> print pals[0]
Glenn
>>> print pals[2]
Joe
>>>

0
1
2
3

• We can replace an element in a list
by using an index in an assignment
statement

• We can sort a list using the sort
method in the list library

>>> print pals
['Glenn', 'Sally', 'Joe']
>>> pals[2] = 'Joseph'
>>> print pals
['Glenn', 'Sally', 'Joseph']
>>>
>>> pals.sort()
>>> print pals
['Glenn', 'Joseph', 'Sally']
>>>

Looping Through Lists

• Loops are an example of the
“repeated code” pattern

• We construct a loop using for and
in will execute a block of code
once for each value in the list

• We define an iteration variable that
takes on the successive elemnents
of the list each time through the
loop

pals = ['Glenn', 'Sally', 'Joseph']

for x in pals:
 print x

print 'Done'

Looping Through Lists

>>> print pals
['Glenn', 'Sally', 'Joseph']
>>> for x in pals:
... print x
...
Glenn
Sally
Joseph
>>>

• Loops are an example of the
“repeated code” pattern

• We construct a loop using for and in
will execute a block of code once
for each value in the list

• We define an iteration variable that
takes on the successive elemnents of
the list each time through the loop

Looping Through Strings
>>> txt = 'guess=25'
>>> for x in txt:
... print x
...
g
u
e
s
s
=
2
5
>>>

• Strings function very much like a
“list of characters”

• So we can construct a loop using
for and in will execute a block of
code once for each value in the list

• We define an iteration variable that
takes on the successive elemnents
of the list each time through the
loop

Python’s Backpack: Dictionaries

• Sometimes we want a bunch
of stuff in a collection where
each item has a label and the
label allows us to store and
retrieve a value

• It is more like a two-column
spreadsheet

label value

• We create an empty
dictionary by calling dict()

• We fill up our dictionary
with assignment statements
where the index is the
“key” or “label” which
marks a value

• When we print a dictionary
we see a list of mappings of
a key to a value

>>> pal = dict()
>>> pal['first'] = 'Glenn'
>>> pal['last'] = 'Golden'
>>> pal['email'] = 'glenng@umich.edu'
>>> pal['phone'] = '517-303-8700'
>>> print pal
{'phone': '517-303-8700', 'last':
'Golden', 'email': 'glenng@umich.edu',
'first': 'Glenn'}
>>>

label value

Retrieving Data

• To retrieve an value from the
dictionary, we can use the
index operation “[“

• But we must make sure that
the key exists

>>> print pal
{'phone': '517-303-8700', 'last':
'Golden', 'email': 'glenng@umich.edu',
'first': 'Glenn'}
>>> print pal['phone']
517-303-8700
>>>
>>> print pal['age']
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'age'
>>>

label value

Safe Dictionary Retrieval

• We can deal with the missing key by using the built-in function get()
and specifying a value to return if the key is not found

>>> print pal
{'phone': '517-303-8700', 'last': 'Golden', 'email': 'glenng@umich.edu',
'first': 'Glenn'}
>>> print pal.get('age','Age not available')
Age not available
>>> print pal.get('phone', 'Phone not available')
517-303-8700
>>>

label value

Looping Through
a Dictionary

• Dictionaries do not maintain order
- but we can loop through them

• We construct a loop with for and
in

• The iteration variable loops
through the keys in the dictionary

>>> print pal
{'phone': '517-303-8700',
'last': 'Golden', 'email':
'glenng@umich.edu', 'first':
'Glenn'}
>>> for z in pal:
... print z
...
phone
last
email
first
>>>

Looping Through
a Dictionary

• If we can loop through the keys, we
can then use those keys to look up
the values

>>> print pal
{'phone': '517-303-8700',
'last': 'Golden', 'email':
'glenng@umich.edu', 'first':
'Glenn'}
>>> for key in pal:
... print key, pal[key]
...
phone 517-303-8700
last Golden
email glenng@umich.edu
first Glenn
>>>

key value

Store/Reuse: Functions

• In the last pattern, we want to write code once and reuse it several
places - this allows us to make changes one place and allows us to
organize larger programs into logical sub-units

Function: How Long is a Sequence?

• The len() function takes a string as
a parameter and returns the
number of characters in the string

• Actually len() tells us the number
of elements of any set or sequence

>>> greet = 'Hello Bob'
>>> print len(greet)
9
>>> x = [1, 2, 'fred', 99]
>>> print len(x)
4
>>>

Len Function
>>> greet = 'Hello Bob'
>>> x = len(greet)
>>> print x
9

len()
function

'Hello Bob'
(a string)

9
(a number)

Guido wrote this code

A function is some stored
code that we use. A

function takes some input
parameter(s) and

produces an output
return value.

Len Function
>>> greet = 'Hello Bob'
>>> x = len(greet)
>>> print x
9

def len(inp):
 blah
 blah
 for x in y:
 blah
 blah

'Hello Bob'
(a string)

9
(a number)

A function is some stored
code that we use. A

function takes some input
parameter(s) and

produces an output
return value.

A Trivial Function

• The def keyword indicates the
beginning of a block and defines a
name for the function

• The block of code is not executed
as part of the “def” process

• We can execute the code later
using the name we assigned to the
function.

>>> def welcome():
... print 'Hello'
...
>>> welcome()
Hello
>>> welcome()
Hello
>>>

Parameters to Functions

• Sometimes we want to feed the function
some value (i.e. a parameter) as its input so
we can use the function for different
purposes

• We define the “formal parameter” on the
def statement

• We pass in the “actual parameter” on the
function call

>>> def welcome(name):
... print 'Hello',name
...
>>> welcome('Glenn')
Hello Glenn
>>> welcome('Sally')
Hello Sally
>>>

Return Values

• A function can “return” a value
back to its caller using the
“return” statement

• This return value “comes back”
and can be used in an
assignment statement or
expression

>>> def greet(lang):
... if lang == 'es':
... return 'Hola'
... elif lang == 'fr':
... return 'Bonjour'
... else:
... return 'Hello'
...
>>> xgr = greet('fr')
>>> print xgr, ’Michael'
Bonjour Michael
>>>

Return Values

• A function can “return” a value
back to its caller using the
“return” statement

• This return value “comes back”
and can be used in an
assignment statement or
expression

>>> def greet(lang):
... if lang == 'es':
... return 'Hola'
... elif lang == 'fr':
... return 'Bonjour'
... else:
... return 'Hello'
...
>>> print greet('en'),'Glenn'
Hello Glenn
>>> print greet('es'),'Sally'
Hola Sally
>>> print greet('fr'),'Michael'
Bonjour Michael
>>>

The try / except Structure

• Sometimes we know a line of code may cause traceback - perhaps
because it is processing user input that may be flawed

• You surround a dangerous section of code with try and except.

• If the code in the try works - the except is skipped

• If the code in the try fails - it jumps to the except section

$ cat notry.py
astr = 'fourtytwo'
istr = int(astr)
print 'First', istr

astr = '123'
istr = int(astr)
print 'Second', istr

$ python notry.py
Traceback (most recent call last):
 File "notry.py", line 6, in <module>
 istr = int(astr)
ValueError: invalid literal for int() with
base 10: 'fourtytewo'

The
program

stops
here

All
Done

 Software

Input
Devices Central

Processing
Unit

Main
Memory

Output
Devices

Secondary
Memory

Generic
Computer

$ cat tryexcept.py
astr = 'fourtytwo'
try:
 istr = int(astr)
except:
 istr = -1

print 'First', istr

astr = '42'
try:
 istr = int(astr)
except:
 istr = -1

print 'Second', istr

$ python tryexcept.py
First -1
Second 42

When the first conversion fails - it
just drops into the except: clause and

the program continues.

When the second conversion
succeeds - it just skips the except:
clause and the program continues.

try / except astr = 'fourtytwo'

astr = 'fourtytwo'
try:
 print 'Hello'
 istr = int(astr)
 print 'There'
except:
 istr = -1

print 'Done', istr

print 'Hello'

print 'There'

istr = int(astr)

print 'Done', istr

istr = -1

Safety net

Comments in Python

• Python ignores blank lines in Python programs and ignores everything
after it sees “#” on a line

This program helps travelers use elevators
usf = input('Enter the US Floor Number: ')
wf = usf – 1 # The conversion is quite simple
print 'Non-US Floor Number is',wf

Comments in Python

• Python ignores blank lines in Python programs and ignores everything
after it sees “#” on a line

usf = input('Enter the US Floor Number: ')
wf = usf – 1
print 'Non-US Floor Number is',wf

Questions...

